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Abstract: Adaptive and compliant manipulation has long been a major constraint for grappling in robotic 
manipulators, especially in space. Currently, space manipulators are typically teleoperated in space by astro-
nauts or by ground operators and are operated very slowly. This acts as a severe restriction on productivity 
rates, largely because the space manipulators rely on the traditional feedback control to work. With feedback 
control, errors must exist to invoke the corrective behaviour. However, this is not the case for feedforward 
control which does not require errors to work. To adopt robotic manipulators in space for the prospect of 
capturing space debris and transforming them into salvageable assets for re-use, robust adaptive manipula-
tion would be key. We believe that a bio-inspired feedforward approach could provide human-like tactility 
required for robustness and adaptability in robotic manipulation. We present a novel predictive feedforward 
control via a forward model, followed by a complete overview of our learning algorithms. Given the simi-
larity in form and dynamics between earth-based and space-based robotic manipulators, we first explored 
the transfer learning of neural network controllers as an avenue to address the challenges of limited compu-
tation resources onboard spacecraft. We introduced a pretrained and learned feedforward neural network for 
modeling the control error a priori. While the results were encouraging, there are major limitations of neural 
networks’ capability to ensuring the transfer learning of similar earth-based dynamics to space-based dy-
namics, given that the parameters of contrast are fairly straightforward. With the results not as plausible as 
expected, an alternative adaptive controller has been learned to demonstrate a viable solution. The controller 
was trained entirely in simulation via rapid motor adaptation of the robot’s controller to the object’s proper-
ties and environmental dynamics using only proprioception history. As a notable step, we have shown that 
appropriate models can be learned in this manner by training the control policy via reinforcement learning, 
which provides avenue for transferring a learned model from earth to space environments. We have shown 
the viability of this approach for adaptive and compliant space manipulator controller transferable from earth-
learned model in simulation of space environment, relying largely on proprioception history. 
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1 INTRODUCTION 

In human level manipulation, various sections of the brain extend into the motor area M1 to supply feedback signals. The 
parietal cortex, for instance, deals with visual control of hand motions, and it calculates the error between the current 
cartesian position and the desired cartesian position [1]. To do this, an efference copy of the motor commands is required 
to produce a feedforward compensation. The efference copy of the motor commands is typically transmitted to an emulator 
which models the input-output response of the musculoskeletal system. From a biomimetic perspective, it is believed that 
a hierarchical neural network system in any control architecture can imitate this function of the motor cortex [2]. During 
human manipulation, the error between the actual motor outputs (joint position (𝜃) and joint velocity (�̇�) evaluated by the 
proprioceptors) and the commanded motor input (torque , from the motor cortex) is fed back as [𝜃 − 𝜃] having a 
time delay of 40-60 ms [3]. However, a “forward dynamics model of the musculoskeletal system exists within the spino-
cerebellum-magnocellular red nucleus system” [3]. This forward model accepts feedback (𝜃 and �̇� ) from the propriocep-
tors and an afferent copy of the motor command () from the motor cortex. Consequently, the forward model receives 
motor command  as its input and outputs an estimated predictive trajectory 𝜃∗ [3], processing this input-output comparison 



between the pair ( and 𝜃∗) to generate a predicted error [𝜃 − 𝜃∗] in a much faster manner to minimize the error. 
The forward model does this prediction/comparison in 10-20 ms, transmitting this to the motor cortex in the process [3]. 
The sensory effects of the motor command are predicted by this forward model. This type of top-down prediction model 
is centered on the statistical reproducible model of the causative nature of the world learned via input-output pairs. This 
can be directly explored with predictive neural networks as forward model by adopting input-output models of deep learn-
ing architecture or multivariate regression. In human level interaction, these forward models of the musculoskeletal system 
have been learned through the initial motor babbling that started from infancy [3]. And the learned models are transferred 
to adapt to changes in stimuli or environments, given the underlying dynamics remain the same. 
      This leads to the practical problem we have detailed in this paper, which is the transfer learning from earth-based 
manipulators to space-based manipulators. In space robotics, there are simply two fundamental changes from earth to space 
which are accounted for through: (i) the absence of gravity in space, and (ii) the direct substitutions of certain derived 
parameters which are quantified in numbers and readily available as a modification of the earth-based equivalents. So, 
essentially, the dynamics of the robotic system remain the same, and necessary environmental variations are readily ac-
counted for. All other space-based environmental factors are known to be negligible as they pertain to the dynamics of 
space robot’s interaction. The environmental disturbance torques (gravity gradient, aerodynamics and magnetic torques) 
imposed on the robot’s spacecraft are very small – within 10e-6 Nm [4]. The primary differentiating characteristics of 
space robotics from terrestrial robotics is that the robot operates in a microgravity environment. Transfer learning of neural 
network controller trained as a forward model in a biomimetic approach similar to how human manipulation is carried out 
should be able to exhibit efficient generalization as typically shown for new data input in most deep learning domain/ap-
plications. However, the practical limitation of transfer learning of neural network controllers is the exhibition of lack of 
general intelligence, as detailed in this paper.  
      Considerable effort has been put into developing machine learning methods that can learn and improve inverse dynam-
ics model of robotic manipulators [5-8]. Online learning has been the focus in these settings because when considering 
motions with object interactions, learning one global model becomes very challenging, if not impossible, since the model 
must be a function of contact and payload signals. To approach the issue of global/dynamic model, learning task-specific 
(error) models has been proposed in the past [9-12], such that the overall global problem is simplified into two subproblems 
– (1) finding a task-specific inverse dynamics model and (2) detecting which task model to use. This permits to iterate the 
collection of data specific to a task, learn an error model, and then apply the learned model during the required task execu-
tion. However, a key difficulty that has been encountered is the computationally efficient learning of models that are data-
efficient as possible, such that only few iterations are required while achieving consistent convergence in the error model 
learning. We seek to address this using predictive feedforward approach, in a pre-learned fashion, by ensuring the transfer 
learning of earth-based model to space environment. Our take on this is that pre-learned input-output models are compu-
tationally efficient compared with analytical models – the latter require exact knowledge of parameters (commonest sources 
of errors which include payload variation) and require computation time. Learned models reduce computation by storing 
model in memory, which also ensure a more compliant and reactive robot. 
      For feedback control to work, errors must exist to invoke the corrective behaviour. This is not the case for feedforward 
control which does not require errors to work. Forward model implemented in conjunction with feedback control reduces 
the potential error excursions [13]. Currently, space manipulators are typically teleoperated in space by astronauts or by 
ground operators and are operated very slowly. This acts as a severe restriction on productivity rates. The incorporation of 
feedforward controllers, therefore, offers the advantage to robustify and speed up operations as they do not require error 
excursion to function. In the following, we first described in Section 2, the background to the derived parameters relating 
space-based manipulator’s kinematics and dynamics to earth-based environment. In Section 3, we detailed a novel predic-
tive feedforward control via a forward model; followed by a complete overview of the bio-inspired motor adaptation ap-
proach in Section 4. Finally, we evaluated the results of the proposed scheme in Section 5 and outlined the conclusions in 
Section 6.  

2 SPACE-BASED KINEMATICS AND DYNAMICS 

We must first consider the kinematics and dynamics of a freeflyer-mounted manipulator. The main differentiating charac-
teristics of space robots from terrestrial robots is that terrestrial robots are mounted onto a firm ground; in space, we have 
no such force or torque reaction cancellation to the movement of manipulator arms. Additionally, the robot operates in a 
microgravity environment; hence, the kinematics and dynamics of free-flying robotic manipulator deployed in space will 
take a different approach. In the consideration of a free-flying robotic manipulator mounted on a spacecraft bus having 
dedicated attitude control, the position kinematics (𝑝∗) of the manipulator in connection with inertial space is given by [14, 
15]: 

𝑝∗ = 𝑟 + 𝑅 𝑠 + 𝑅 𝑙                                   (1) 



where 𝑟  is the position of the spacecraft centre of mass with respect to the inertial coordinates; 𝑅  is the attitude of the 
spacecraft with respect to the inertial coordinates; 𝑠  is the position vector of the manipulator base with respect to the 

spacecraft body centre of mass; 𝑅  is the 3-by-3 direction cosine matrix 
of each link with respect to the base coordinates; n is the number of 
serial rigid body links; i represents the link number from 0 to n; while 
𝑙  is the vectoral length of link i from  (𝑥 , 𝑦 , 𝑧 ) to (𝑥 , 𝑦 , 𝑧 ). 

 

Figure 1: Spacecraft-Manipulator Geometry (𝐶  represents spacecraft’s center 
of mass; 𝑟  is the distance between the centres of mass of adjacent links with 
respect to the base coordinates; 𝐶  is the center of mass of link i; 𝑝∗  is the posi-
tion of the link i centre of mass with respect to the inertial coordinates) 

For spacecraft bus with dedicated attitude control, 𝑅  = 𝐼  (identity ma-
trix). The center of mass of the whole system (the robotic manipulator, satellite bus mount, and the payload) is represented 
by [14, 15]: 

𝑝∗ =
∑ 𝑚 𝑝∗

∑ 𝑚
                                                   (2) 

where 𝑝∗  is the location of the centre of mass of the complete manipulator/spacecraft system with regards to the inertial 
coordinates; 𝑚  is the mass of each component rigid body links; 𝑛 is the number of rigid body links; 𝑛 = 0 represents the 
spacecraft body link; 𝑝∗  is the position of link 𝑖 centre of mass in reference to the inertial coordinates. Similarly to terres-
trial manipulator algorithms in the form of  𝑝  = 𝑅 𝑙 , the equation of the space manipulator for the location of the center 
of mass of the complete manipulator/spacecraft system with regards to the inertial coordinates (𝑝∗ ) has been derived to 
be [16-18]: 
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𝑚
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where 𝑚  is the mass of the spacecraft bus; 𝑚  is the total mass of the system; 𝑚  is the mass of each component rigid 
body i comprising the system; 𝑟  is the vectorial distance from the origin of link i to the centre of mass of link i; 𝑛 + 1 
represents the corresponding notations for the payload link. Equation (3) was separated into three parts: parts related to 
body 0 (the spacecraft), bodies 1 to 𝑛 (the manipulator links) and body 𝑛 + 1 (for the payload). This then reduces to [18]: 
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This concludes the location of center of mass of the system with respect to inertial space. It is assumed arbitrarily that the 
local inertial reference frame initially coincides with the spacecraft bus center of mass, that is, 𝑟 = 0, since any point 
fixed in the interceptor body could be regarded as inertially fixed prior to any robotic maneuver [18]. Having defined 𝑝∗ , 
the term 𝑟  is then substituted into Equation (1), which gives  

𝑝∗ = 𝑝∗ + 𝑠 + 𝑅 𝑙 −
1

𝑚
𝑚 𝑟     (5) 

This is further simplified into: 



𝑝∗ = 𝑝∗ + 𝑠 + 𝑅 𝑙   −  …

    
1

𝑚
𝑚 (𝑅 𝑟 + 𝑅 𝑠 )              (6)

 

where 𝑟 = 𝑅 𝑟 + 𝑅 𝑠  [18]. Similarly, we separate out the three parts associated to the spacecraft mount (body 0), 
bodies 1 𝑡𝑜 𝑛 for the manipulator links and body n+1 for the payload [18]. This gives 
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Accordingly, λ  is referred to as the lumped kinematic parameter for each manipulator link. The equation (7) of p∗ is an 
equivalent form to that of the terrestrial-based manipulator of the form p = ∑ R l  with added constants; (p∗  is constant, 
and λ  is constant as the lumped kinematic/dynamic parameter, replacing the l  in terrestrial-based manipulator). 
      Therefore, the inverse kinematics solution to the space manipulator geometry can be found with little modifications to 
the terrestrial algorithms. 

3 PREDICTIVE FEEDFORWARD CONTROL 

Our bio-inspired error-learning approach addresses the need for reactive and adaptive behavior to diverse range of tasks 
under dynamic environmental conditions. If we could successfully demonstrate this for a terrestrial manipulator, the idea 
is to incorporate the approach in a free-flyer concept for the removal of space debris of varying sizes; with the aim to offer 
a solution transferrable from earth to different orbital bands. In effect, we propose here a control scheme that is centered 
on biomimetic models for predictive forward control in conjunction with traditional feedback control. We believe that bio-
inspired forward models could provide solution for adaptive and robust control, which could position robotic manipulators 
for the complex task of salvaging space debris if the learned model can be successfully transferred to space environment. 
Adaptivity will be implemented through learning of new forward models to adapt to new situations; robustness is imple-
mented in the form of forward models that provide rapid behavior without relying on error excursions unlike traditional 
feedback controllers. The superiority of feedforward-feedback control over feedback control only has been clearly demon-
strated [13]. Pure feedback control is implausible for reactive manipulation due to substantial delays in sensors’ feedback 
signals. This is like the case biologically where human reaction time is limited to a maximum of about 400-500 ms [19]. 
Therefore, a predictive feedforward strategy is proposed as added measure to correct the robot’s trajectory along with the 
feedback control. In this current study, we have not yet implemented feedback delays into the forward model yet – the 
work presented here is the first step in building a more comprehensive and sophisticated manipulator control system. The 
bio-inspired control system should comprise a paired feedforward-feedback system with a learning system that adapts 
forward models for different scenarios such as time delays and/or payload variations. Hence, the core of this approach is 
the forward model presented. A two-layer approach towards grasping has been presented: (i) position control through 
feedback, which is the traditional approach - but delays in the feedback cycle can generate instabilities; (ii) the addition of 
a feedforward predictive capability to partially circumvent this problem of instabilities by adopting pre-trained set of neural 
networks which in a way emulates the function of the cerebellum as seen in humans.  
      The predictive feedforward approach involves pre-learned models trained offline, which then provide a computation-
ally efficient control model for low controller gains necessary for reactive and adaptive control. We have introduced task-
specific models that are able to learn from their errors (make error predictions) under different and varying dynamics. The 
proposed approach is more practical for space-based manipulators because there would be no major hindrances such as 
high computational complexity; and secondly, the trained forward models do not require high computational resources to 
implement which is usually a constraint onboard spacecraft. This is where transfer learning comes in as a practical solution 
for transferring pre-trained earth-based model to space environment. Most automatic control algorithms have not been 
demonstrated in space as most manipulator control systems are teleoperated from earth. 
      Here, we present a forward model that is learned (or trained) as a neural network approximator using some trajectory 
datasets relating the output torque τ to the kinematic state of the joints (𝜃, �̇�, �̈�)  in an experimental teaching mode. The 
trained forward model will hence be able to take the analytically calculated torque (efference copy of input motor com-
mands) as its input, while the output of the neural network will be the  



 
Figure 2: The predictive forward model scheme. The neural network (“NNet”) model is trained using data from experi-
mental teaching mode. DH stands for Denavit–Hartenberg; q represents DH parameters for forward kinematics. D, C and 
G represent inertia matrix, coriolis and gravity components respectively; Kd and Kp are derivative and proportional con-
troller gains.  
 
predicted trajectory output (𝜃 ,   𝜃̇ ,   𝜃̈ ) . The system then incorporates an inverse model with a feedforward adaptive 
part; that is, it includes a feedback loop and feedforward component. The feedforward controller is trained using the output 
of the feedback controller which serve as error signals. The trained feedforward component models the inverse dynamics 
of the system. The feedback controller is effectively a computed torque controller while the feedforward controller employs 
a gradient descent to minimize the error. 
      The forward dynamic model of a robotic manipulator is given by (for the sensory joint acceleration rate): 
 
�̈� = 𝐷 (𝜃)[𝜏 − 𝐶 𝜃, �̇� − 𝐺(𝜃)]  

Joint acceleration �̈� could be integrated to get joint rate �̇� and joint rotation θ as the predicted sensory state outputs from 
torque input τ. The body’s muscular nature which produces a predicted trajectory output from efference input motor com-
mands can be imitated by the predictive forward model [20]. To compensate for time delays, the feedforward control 
consequently predicts its response to system disturbances using a model of the plant process [21]. This predicted trajectory 
output would be supplied as input to the feedback component to compensate for delays (and this process could continue 
iteratively). It is believed that forward models can adjust 7.5 times more speedily than when using only inverse models 
[22]. The forward model, in this case, is executed as a neural network function estimator to the forward dynamics. 

4 BIO-INSPIRED MOTOR ADAPTATION 

Results of the predictive feedforward model for a WAM Barrett space manipulator have been detailed in a recent study 
[23], where the results showed how the developed neural network and regression models were capable of predicting (to a 
high degree of accuracy) forward trajectory variables (𝜃 ,   𝜃̇ ,   𝜃̈ ) from an efference copy of the torque. Models were 
poised to cancel the sensory effects of the arm movement, providing anticipated sensory consequences from the motor 
command. However, there was a notable drawback to the trained feedforward model as it needed to re-learn the new dataset 
as adopted for the space manipulator [23]. It was discovered that the possibility of transfer learning could not be exploited 
after the optimized initial training, even though the deduced terrestrial-to-space manipulator dynamics were incorporated 
analytically in the model learning process. 
      With the results not as plausible as expected for trained neural network transfer from earth-based controller to space 
environment, an alternative adaptive controller has been learned to demonstrate a viable solution. The controller was 
trained entirely in simulation via rapid online adaptation of the robot’s controller to the object properties and environ-
mental state using only proprioception history. Successful real-world deployment of robotic manipulators in space would 
require them to adapt in real-time to unseen states like changing inertial origin, changing payloads, contact dynamics, and 
so on. We adopt here the Rapid Motor Adaptation (RMA) algorithms [24] to solve this problem of real-time online adap-
tation for robotic manipulator. RMA consists of two components: a base policy and an adaptation module. The combina-
tion of these components enables the manipulator to adapt to novel and different situations in a very compliant manner. 
RMA is trained completely in simulation without using any domain knowledge like reference trajectories or predefined 
hand trajectory generators and can be deployed in real-world robotic manipulator without fine-tuning, although the scope 



of this work does not cover real-world deployment beyond the simulation demonstrated. As a notable step, we have 
shown that appropriate models can be learned in this manner by training the control policy via reinforcement learning 
(RL), which provides avenue for transferring the learned model from earth to space environments. The prevailing ap-
proach is to train an RL-based controller in a physics simulation environment and thereafter transfer to the real world 
using several sim-to-real techniques [25, 26]. This transfer has proven quite difficult, because the sim-to-real gap itself is 
the result of multiple factors [24] 

Figure 3: An overview of the RMA approach at different training and deployment stages [27]. In Base Policy Training, 
the base policy (π) and the environmental/object property encoder (μ) are jointly trained using PPO [28]. The observa-
tion 𝑜  contains three past joint positions (the current and two previous 𝑞 : ) and the past commanded actions (the three 
previous actions 𝑎 : ). In Adaptation Module (f) Learning, the policy π is frozen and supervised learning is used to 
train f which uses proprioception and action history to estimate the extrinsics vector 𝑧 .  

Proposed RMA [24] demonstrates a simplified solution to this challenge for quadruped locomotion, using as an experi-
mental platform the relatively cheap A1 robot from Unitree. It was postulated that RMA has to occur online, at a time scale 
of fractions of a second. This implies that there is no time to carry out multiple experiments in the physical world, rolling 
out multiple trajectories and optimizing to estimate various system parameters. As the simplified approach of RMA was 
demonstrated to be successful, we have hence adopted and extended the method to the problem of training the predictive 
feedforward model for the adaptive space manipulator approach highlighted in Section 3. This is following the limitations 
of the feedforward neural network controller highlighted in Section 5.1. This relates to the transfer learning of the pretrained 
model from earth to space environment without the need (and there is no such time allowed) for online retraining to guar-
antee adaptive and compliant manipulation. Hence, the reason it was postulated and designed such that RMA has to occur 
online at a time scale of fractions of a second if we would declare it as viable solution. This is quite crucial for space 
application of robotic manipulators for probable debris removal because with no prior experience, the robot/manipulator 
policy would fail often, causing grave damage to the manipulator in a failed attempt to deorbit the debris. Collecting even 
2-3 minutes of manipulation data in order to adapt the manipulation policy may be practically infeasible. Our strategy 
therefore entails that not just the basic manipulation policy, but also RMA must be trained in simulation, and directly 
deployed in the real world. Figure 3 shows the overview of the RMA approach at different training and deployment stages. 
It consists of two subsystems: the base policy and the adaptation module, and they work in conjunction to enable online 
real-time adaptation on a diverse set of simulated environmental configurations. The base policy is trained via reinforce-
ment learning in simulation using privileged information about the environment configuration (𝑒 ) such as payload, inertial 
origin, object position, center of mass, etc. This stated privileged information can be deduced or perceived by the robotic 
manipulator and can be compressed into a compact feature representation which can be referred to as the extrinsics – 
represented with 𝑧  in Figure 3. The vector 𝑒  is encoded beforehand into the feature space 𝑧  using an encoder network 
(μ) as shown in Figure 3. The vector 𝑧  is then fed into the base policy (π) along with the observation 𝑜  which contains 
three past joint positions (the current and two previous 𝑞 : ) and the commanded actions (the three previous actions 
𝑎 : ). The base policy thereafter predicts the desired (next) position commands of the robotic manipulator (𝑎 ), which 
are converted to torque using a PD controller. The base policy (π) and the object/environmental factor encoder (μ) are 
jointly trained via RL in simulation. However, this policy cannot be directly deployed because we do not have access to 
the vector 𝑒  in the real world. Hence, we need to estimate the extrinsics at run time, which is where the Adaptation Module 
() comes in. In adaptation module learning, the policy π is frozen and supervised learning is used to train  which uses 



proprioception and action history to estimate the extrinsics vector 𝑧 . When it comes to the stage of Deployment as shown 
in Figure 3, the base policy π uses the extrinsics �̂�  estimated and is updated online by . It is proven that the policy would 
infer a low-dimensional embedding of environmental or object’s properties such as payload and inertial origin from pro-
prioception and action history, which is then used by the base policy to manipulate the object [27]. 
 

5 RESULTS 

In this present work, we have adopted and developed a robotic manipulation environment involving a 7 DOF Franka Emika 
Panda manipulator in simulation to grasp and pull (mimicking deorbiting) a cabinet which is acting as dummy debris with 
varying payloads. The simulated cabinet has a total of 4 DOF. A gripper with 2 DOF was affixed to the end of the robotic 
arm, making it a total of 9 DOF for the robotic manipulator. These 9 joints are controlled using position control at 20 Hz. 
The target position commands are converted to torque using a PD Controller (K p = 3.0, K d = 0.1) at 300 Hz. We use the 
IsaacGym [29] simulator in the setup. For the base policy training, parallel environments of 8,192 were used to collect the 
samples for training the agent. Each environment contains a simulated Franka Emika manipulator and a cabinet with dif-
ferent payloads. The simulation frequency is 120 Hz and the control frequency is 20 Hz. Each episode lasts for about 500 
control steps. For the learning of the base policy (π) and environmental factor encoder network (μ), training took approxi-
mately 5-6 hours on an ordinary desktop machine with 24GB GPU memory, simulating the 1.2 billion total steps. 
 

                          
Figure 4: Results from Base Policy (π) Training on our environment with the implemented RMA algorithms. We plot the 
average episode reward during the total training of 1.2 billion steps. The vertical axis represented by the ‘Average Episode 
Reward’ could be termed the ‘success rate’ in a layman context. The sustained maximized reward shows that policy suc-
cessfully learned and converged to the expected outcome, consistently and continuously over 1.2 billion steps. 
 
 

 
Figure 5: The expected stages of the learning process showing the expected outcome of the Franka manipulator grappling 
the space object. The base policy agent’s reward system is aggregated for the grippers reaching the cartesian position of 
the handle, making successful contact with the handle, and grappling for the actual passivation to pull the drawer.   

                         



 
Figure 6: Results from Base Policy (π) Training on the environment with the implemented RMA algorithms, showing 
entropy losses and learning performance during the total training of 1.2 billion steps.  
 
For the optimization during the base policy training, the joint optimization of the policy π and the environmental/object 
encoder network µ in each PPO iteration involves the collection of samples from the 8,192 environments with 8 agent steps 
each. We train 5 epochs with a batch size of 16,384, with 20 gradient updates on the simulated data. The learning rate was 
5e−3, and we optimized for 50,000 gradient updates.  
For the adaptation module () training, we used supervised learning with on-policy data. Adam optimizer [30] was used to 
minimize the MSE loss. We run the optimization process over a total of 1 billion steps which took about 2 hours of training 
on the 24GB GPU memory desktop machine, with a learning rate of 5e−4. The major advantage of this approach is that 
we can use the enormous amount of simulation samples to learn a complex behavior such as this, which will not be possible 
in the real-world. 
 
 

                            
Figure 7: Results from Adaptation Module () Training on the environment with the implemented RMA algorithms, show-
ing the average episode reward during the total training of 1 billion steps, along with the episode lengths plot.   
 
 
For the network architecture, the base policy (π) is a multi-layer perceptron (MLP) which takes in the state (o ) and the 
extrinsics vector (z ), and outputs the action vector (a ). Every other network architecture and details were adopted and 
developed as proposed by [27] for the RMA. Compared to other baselines, it has been shown that the RMA method with 
online continuously adaptation achieves the best performance, as extensively investigated by [24, 27], closely matching 
the performance of the Expert that has the privileged information as the input. 
 

6 CONCLUSION  

 
Having highlighted a major drawback of input-output mapping of a neural network in retaining the kinematic and dynamic 
structure of the space manipulator, there is a practical limitation of regression and neural network architecture as a model 
of general intelligence. An alternate approach has been detailed in this paper exploring bio-inspired rapid motor adaptation 
as a solution. It has been demonstrated that an adaptive feedforward model can be pre-trained on earth in simulation prior 
to deployment and subsequently adapts to changes in the dynamics and other environmental parameters of the system in 
space. We have shown the viability of this approach for adaptive and compliant space manipulator controller transferable 
from learned model. Continuous online training as typically obtained in the context of traditional reinforcement learning 
deployment is not feasible in the application of space robotics, for reasons stated in Section 3 – constraint of high compu-
tational resources onboard spacecraft. The major advantage of this RMA approach is that we can use the enormous amount 
of simulation samples to learn a complex behavior such as this, which will be improbable in the real-world context. A 
future scope to the present body of work would be the experimental deployment of the learned model in real-world.  
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